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Abstract— As time progressed, we are seeing that cyberattacks
are increasing and becoming more advanced due to the micro-
electronic devices, and this does not render traditional security
methods and processes effective. As a response to this situation,
we propose to develop a new model that includes artificial
intelligence (AI) in the form of machine learning (ML), and deep
learning (DL), along with ethical hacking (EH) to address issues
related to security. In the new model, A (ML and DL) will
complete regular tasks like scanning for vulnerabilities, and
threat analysis allowing for human interaction to confirm and
make the final decision. In our experiments using simulations we
found that when we used our model with Al assistance that we
could detect exploits in a much shorter time and our zero-day
vulnerabilities performed better than manually testing. In the
report/paper we offer many examples and a system technical
architecture on how the Al and human components of the system
introduced work together. Our results indicate that AI ethical
hacking can reduce pentesting time and improve security. There
are challenges with implementation and model bias, along with
ongoing risks such as adversarial attacks. In summary, we
present solutions and future research opportunities for the secure
implementation of Al in penetration testing for the purpose of
cybersecurity.
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[. INTRODUCTION

Simultaneously, Artificial Intelligence (AI) and Machine
Learning (ML) techniques have shown great promise for
addressing a variety of problems in cybersecurity. Deep
learning models, Natural Language Processing (NLP) models,
and anomaly detection systems have claimed perfect (or near
perfect) performance identifying complex attack vectors, on
benchmark datasets. Research has shown that Al can be used
to automate vulnerability detection, recommend exploits, and
improve incident prioritization, thus improving overall
operational efficiency.

Notwithstanding, many challenges remain with fully
autonomous Al systems including bias, lack of explainability,
and the potential for adversarial exploitation, trust in decisions,
and ethical considerations. To fill the voids, we propose a
Collaborate Deep Learning (CDL) Framework, where the Al
is automating tasks while the human ethical hacker is

verifying findings, providing feedback, and offline purposeful
strategic moves.

This paper proposes an overview of the CDL architecture,
highlights selected domains showcasing employment of the
architecture and experimental validation of the CDL
Frameworks effectiveness in these areas, and examines the
challenges, successes and methods of Al-empowered ethical
hacking concepts.

II. LITERATURE REVIEW

The integration of Artificial Intelligence into cybersecurity
has been extensively studied, with numerous contributions
highlighting its impact on intrusion detection, anomaly
detection, threat intelligence, and penetration testing.

In intrusion detection systems (IDS), deep learning models
such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs) or hybrid models have yielded very
high success for learning complex attack patterns in literature.
Multiple studies reported accuracies higher than 99% using
the nsl-kdd and cic-ids2017 benchmark datasets [1] [2]. On
top of single model studies, feature selection methods and
ensemble learning, or the use of oversampling, have also
improved performance in machine learning-based IDS models.

Recently, recent literature has explored Al-based
penetration testing. Koroniotis et al. [3] created a LSTM-
enabled pentesting framework for IoT environments and
reported very good detection performance. He et al. [4]
developed Al-based ethical hacking approaches for health
information systems and used ant colony optimization (ACO)
algorithms - which demonstrated to effectively find
vulnerabilities.

The increasing prevalence of the use of generative Al for
pentesting wether that is using large language models (LLMs)
to help write exploits or write reports has also been noted in
the literature by Hilario et al. [5]. These Al systems have all
measured as being significantly faster operations, nonetheless
issues surrounding ethics and the use of these systems in
pentesting include but are not limited to adversarial attack
possibilities, hallucinating vulnerabilities, privacy issues, and
accountability.
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Therefore while AI systems can enhance cybersecurity
processes, literature indicates this means there is a need for
human intervention, a lack of transparency in these actions,
and responsible integration practice to allow for ethical safety.

III. METHODOLOGY

Our proposed Collaborative Deep Learning (CDL)
Framework blends Al automation with human ethical hacking
expertise.

The methodology consists of the following phases:

A. Reconnaissance and Data Collection

Information gathering occurs through services and scanning
tools (Nmap, Shodan) and network-monitoring. The
information will consist of intelligence on open ports, services,
OS versions, and configurations which feed the knowledge
base.

B. AI-Driven Vulnerability Scanning

NMAP, Shodan, and other tools will be broadly used to
complete machine learning based models on all the data with
known vulnerabilities and exploit patterns, and examples are
generally used like CNN, LSTM, and Random Forests which
look for anomalies or differences in traffic, firmware, and
configuration.

C. Automated Exploit Suggestion

After identifying vulnerabilities, AI modules will suggest
possible exploitable vulnerabilities, and a generative Al model,
either based on a fine-tuned language model but automatically
produce sample attack payloads based on the characteristics of
vulnerabilities as criteria.

D. Human-in-the-Loop Verification

While Al can detect possible vulnerabilities after analyzing
the environment during vulnerability analysis, collecting the
data, and continuing to report, the security analyst validates
vulnerabilities, disputes, and hearsay, gives some direction to
Al, filter false positives, and select some action.

E. Attack Simulation and Reporting

When confirming vulnerabilities in sandbox or controlled
environments, the validated vulnerabilities will be exploited
for further reconnaissance to build an attack vector, the
security analyst uses a means to confirm exploited aspects of
the business or economy will compiled following attack
vectors, exploited systems and assessments of impact are
outlined in detail in the penetration test report.

F. Continuous Learning and Feedback

Human analyst's feedback and attack simulation results are
utilized to retrain the AI models. The loop of continuous
learning enhances the accuracy of the models, resonates with
rising threats, and decreases bias over time.
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Figure 1: CDL framework architecture overview
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IV.SYSTEM ARCHITECTURE

The Collaborative Deep Learning (CDL) System
Architecture has been designed with modular and scalable
components to ensure security, efficiency and flexibility. The
primary components are:

A. Data Sources

Network sensors, system log files, vulnerability scanners
and public databases (e.g., CVE repositories) serve as initial
data sources.

B. AI Analysis Engine This core module hosts:

Feature Extraction units, responsible for converting raw
data into formats that can be input into models.

Anomaly Detection Models (CNNs, Autoencoders) used to
detect abnormal patterns.

Vulnerability Scoring Models wused to prioritize
vulnerabilities based on severity.

C. Attack Orchestration Unit

This unit will organize the suggested exploits produced by
the Al and will facilitate the execution of controlled attacks in
a sandboxed environment to establish whether the
vulnerabilities are exploitable.

D. Human—AI Interface

A dashboard provides live visualizations of the findings
produced by the AL Analysts can approve, deny or alter the
suggestions made by the Al in the interest of human oversight
in any critical decisions.

E. Knowledge Base and Model Updater

The confirmed vulnerabilities, exploits and human feedback
are stored in one common database. Periodically, the Al
models will be retrained using the enriched database to
optimize future performance.
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Figure 2: CDL System Architecture Overview
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V. EXPERIMENT & RESULT

The researchers aimed to validate the above proposed

Collaborative

Deep Leamning (CDL) Framework, by
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performing a practical evaluation using two Windows-based
machines and Anaconda JupyterLab. The focus of the
evaluation was to evaluate the performance of the CDL
framework against two approaches to compare;

i) Manual pen testing and

ii)  Normal automated scanners.

A. Experimental Setup

A lightweight virtual testbed was created over two physical
Windows systems. One operating system served as the
analysis and training environment for machine learning
models and the second system was used to generate attack
traffic using benchmark datasets. All experiments were within
JupyterLab and implemented using Python based libraries,
such as TensorFlow, Scikit-learn, Pandas, and Matplotlib.

The following publicly available datasets were used:

e NSL-KDD: A cleaned version of the KDD'99 dataset
developed for network intrusion detection benchmark
purposes.

e CICIDS 2017 A large dataset with different attack types
covering modern attack techniques related to DDoS,
brute-force, and botnet traffic.

Three different Al models were part of the CDL pipeline:

e CNN-based anomaly detector that identifies
abnormal network behavior (e.g., port scans, DDoS).

e Random Forest classifier which predicted the risk to
vulnerabilities using system-level (in the context of pen
testing).

o Feedforward Neural Network (FNN), which related
vulnerability to the exploit type.

any

As baselines, the following approaches were used:

Manual ethical hacking, using tools like Nmap and
OpenVAS.

Standard automated scanners, like Nessus and Nikto,
without Al enhancements.

B. Evaluation Metrics
The system was evaluated using the following metrics:

e Detection Rate (True Positive Rate)
identifying actual attacks.

e False Positive Rate (FPR) — Incorrectly flagged benign
events Flagged benign events incorrectly.

e Exploit Mapping Accuracy — Correctly suggested
exploits by the FNN.

e Average Detection Time — Time taken from the initiation

of the scan to sending detection notifications.

—Correctly

C. Observations
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The results for CDT were better than all other frameworks
for all evaluation metrics (Table 1).
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Exploit

Aporoach Detection FPR Time Coverage
PP Rate (%) | (%) (min) | (Critical

Vulns)
Manual 91.3 46 17 | Baseline
Pentest
Automated 945 53 145 Slight
Scanner Improvement
CDL 99.7 2.1 11.8 |27% higher
Framework

Table I — Performance Metrics Comparison

The CNN model successfully identified stealthy attacks in the
CICIDS dataset, and the Random Forest model was highly
predictive at classifying types of intrusion in the NSL- KDD.
The FNN achieved 93% in exploit mapping accuracy when
validated against hand-labeled exploit categories.

D. Practical Execution

All of the models were trained and tested in the Jupyter
environment. The CNN model was trained for ten epochs with
a batch size of 64 as follows:

model = Sequential()
model.add(Dense(128, activation="relu',
input_shape=(X.shape[1],)))
.add(Dense(64, activation="relu'))
model.add(Dense(1, activation="sigmoid'))

model.compile(optimizer="adam’, loss='binary crossentropy',
metrics=['accuracy'])

model.fit(X, y, epochs=10, batch_size=64,
validation_split=0.2)

Training accuracy exceeded 99.6%, showing that the model is
a suitable candidate for an intrusion detection model.

E. Performance Visualization

The figure below shows a performance comparison chart of
the detection rate and average detection time of the three
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methods. As shown here, the CDL framework has the highest
accuracy and lowest processing time consistent with the
findings for quantitative effectiveness.

Performance Comparison Chart

100
50
0
Manual Automated CDL
Pentest Scanner Framework

W Detection Rate (%) @ Average Time (hrs)

Figure 3. Performance comparison of manual pentesting,

automated scanning, and the proposed CDL framework based on

detection rate and average detection time.

F. Human-AI Collaboration Observations

The ethical hackers that participated in the experiment
mentioned that their verification time was approximately 30-
35% less by utilizing Al-generated insights. The feedback loop
allowed the AI models to adjust more accurately for upcoming

experimentation, further proving the value of continuous human-

in-the-loop improvement.

VI. CHALLENGES & SOLUTIONS

While the use of artificial intelligence effectively enhances
ethical hacking operations, it also brings with it a set of
operational, technical, and ethical issues. The given CDL
(Collaborative Deep Learning) framework identifies these
main issues and includes specific mitigation techniques to
combat them effectively.

A. Model Bias and False Positives

Challenge:

Al-based detection could create false positives; meaning it
must flag benign activities as malicious behaviors, and may
not recognize previous attack patterns it has never seen before.
This can ultimately increase the burden on analysts, and can
also result in desensitization of alerts.

Solution:

To reduce the risk of generating false positives, the system
includes diverse populated and continuously updated data sets,
such as known behaviors and emerging threat behaviors. The
system also includes ensemble models in order to leverage
multiple learning algorithms to enhance detection. An
interactive loop between the human analysts and the Al
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learning will enable real-time model tuning, which provides
the Al system with the capability to learn from previous
incorrect classifications and to decrease bias over time.
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B. Adversarial Attacks on AI Models

Challenge:

A sophisticated attacker will be able to create adversarial
inputs; which are slight modifications of the original data that
are designed to fool machine learning classifiers, thereby
avoiding detection.

Solution:

Adversarial training can be integrated into your learning
process. When the Al is presented with adversarially modified
data samples during training, it can become more resilient to
potential forms of manipulation. In the second layer of
detection, anomaly detection models can be used to detect an
unusual behavior even if the primary classifier disagrees, such
as commonly used convolutional neural network (CNN).

C. Privacy and Legal Compliance

Challenge:

Inspecting security logs and user activity information
involves risks to privacy and can compromise compliance, e.g.,
GDPR, HIPAA.

Solution:

The framework uses federated learning to decentralize the
training, so sensitive data is kept on the local device. Only
model updates are communicated for aggregation, as opposed
to raw data. Further, to protect user identity, differential
privacy approaches were used to add statistical noise to the
datasets, so that individual records do not "belong" to any one
user.

D. Explain ability and Trust

Challenge:

Security analysts may not be inclined to trust Al decisions
if they do not understand the underlying decision logic, thus
impeding any trust and adoption of the model.

Solution:

The framework includes Explainable Al (XAI) tools (e.g.,
SHAP [Shapley Additive Explanations] and LIME [Local
Interpretable Model-agnostic Explanations]), which show
which features led to a model's recommendation and the
impact of those features. Additionally, there is a confidence
score for any Al recommendations to inform analyst judgment
and to improve trust in the recommend decision.

E. Ethical Misuse Risk
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Challenge:

Al-empowered penetration tools could be weaponized if not
accessed by the right individuals, creating severe risks to
system integrity and public safety.

Solution:

Features of the framework that prevent misuse include role-
based access, real-time vigilance tracking, and automatic
activity logging and storage for all modules. Sensitive
capabilities such as exploit generation will be limited to
authorized environments with all usage being sandboxed. All
activities will operate hurry up to ensure compliance with
ethical stab protocols with the parameters of existing laws to
ensure accountability and responsibility.

VII. FUTURE SCOPE

The future of adversarial Al and Al-empowered ethical
hacking is vast and bright. As adversarial threats develop and
artificial intelligence capabilities grow, new pathways for
security automation, responsiveness, and intelligence-sharing
will surface. Below are trends that we expect to be major
influencers in the next generation of Al-powered cyber
security platforms.

A. Integration with Generative Al

Advanced language models such as GPT-4 and future
transformers, can unlock a new frontier in penetration testing.
Specifically, these models can be trained on curated exploit
repositories and threat intelligence feeds to automatically
develop context-aware payloads, social engineering scripts
and attacks plans that are generated on-demand or context-
specific. This would significantly decrease the effort to
manual script, while improving the creativity and scope of
automated red team efforts. Protocols will need to be created
to ensure ethical deployments to avoid misuse or across-the-
board over-automation (an Al operating autonomously
without human operators).

B. Large-scale Federated Learning

Federated learning has proven its worth as a method of
training privacy-preserving Al models. The scope of federated
learning in the near future will no longer be confined to a
single verticals and can be scaled across industries and
governments, providing greater collective intelligence and the
protection of local data sovereignty. This means multiple
organizations can work together to improve their intrusion
detection models, while retaining threat logs that contain local
PII data files. Potentially transparency and traceability of
models could be built upon blockchain-based audit trails to
allow stakeholders to review training protocols to ensure
avoidance of "bad data."

C. DevSecOps Automation
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In processing Al-enabled security validation processes into
CI/CD pipelines is a logical next step in DevSecOps evolution.
Integrating lightweight pentesting capabilities into software
development lifecycle processes, organizations will be able to
automatically tag insecure code commits, flag secure coding
alternatives, and alert real time before deployment. Solving
vulnerabilities in this continuous feedback loop can help
reduce the risks of breaches and, also, lower the overall costs
of patching.

D. Quantum-Resilient Security Testing

The emergence of quantum computing creates another class
of cyber security threats, particularly directed against various
cryptographic protocols. Future ethical hacking frameworks
built on AI will need to feature modules that will test for
quantum vulnerability, simulate post-quantum attack modes,
and verify quantum-safe cryptographic implementations.
Cooperation and collaboration with the quantum research
communities is essential in developing pre-emptive defence
models.

E. Autonomous Blue and Red Teams

The concept of Al-driven red and blue teams presents a
significant step toward fully autonomous security simulations.
Red team agents could autonomously probe, exploit, and adapt
attacks using reinforcement learning, while blue team agents
could detect, respond, and harden systems in real time. The
closed-loop training between offensive and defensive agents
may generate synthetic data and intelligence that continuously
improves both sides, enhancing system resilience without
human intervention.

F. Standardization and Regulation

As Al continues to permeate cybersecurity, the need for
globally recognized standards, regulations, and ethical
guidelines becomes paramount. Standardization bodies such as
IEEE, ISO, and NIST are expected to release comprehensive
frameworks outlining the safe, lawful, and transparent use of
Al in penetration testing, vulnerability discovery, and threat
response. These standards will guide industry practices, ensure
interoperability, and help enforce responsible Al deployment
in high-stakes environments.

VIII. CONCLUSION

This study has presented a new Al Powered Ethical
Hacking Framework that combines the power of the artificial
intelligence and human skills to improve cybersecurity
practices. The framework includes the incorporation of deep-
learning models, automated exploitation generation, and
traditional penetration testing methodologies while allowing
human-in-the-loop oversight through a coupled interface.

The findings demonstrated the proposed system improved
vulnerability detection, testing efficiency and adaptability
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when compared with either manual or traditional automated
testing methodologies via controlled experimentation. The
proposed socio-technical architecture can learn over time from
the feed-back of completed penetration tests making it
resilient to threats in dynamic cyber environments and
scalable to future iterations.

We presented best practices regarding inherent
methodological challenges including AI bias and ethical
concerns. There were also best practice implementations
proposed in our study regarding privacy, explainability, and
human in the loop control (connectivity), like federated
learning and explainable Al. The paper outlines future work to
improve the nutritional content of the framework by
considering ethical standards at the global level, how our
framework can integrate with larger cyber defence practices
(like DevSecOps), and further the possibilities supported by
quantum-safe Al models in imperfect cyber environments.

To conclude, while Al-Powered Ethical Hacking is only

recently emerging, it provides improved scalability,
intelligence, and adaptability for tactical and strategic
cybersecurity  practices; through continued adaption

(intelligently) to the nature of the potential targets it provides
intelligent defensive mechanisms to combat threats and to
supplement existing traditional practices. If acted with due
diligence, organizations incorporating such an AI-Empowered
Ethical Hacking framework into their operational activities
will be able to stay ahead of threats.
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