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Abstract— As time progressed, we are seeing that cyberattacks 
are increasing and becoming more advanced due to the micro-
electronic devices, and this does not render traditional security 
methods and processes effective. As a response to this situation, 
we propose to develop a new model that includes artificial 
intelligence (AI) in the form of machine learning (ML), and deep 
learning (DL), along with ethical hacking (EH) to address issues 
related to security. In the new model, AI (ML and DL) will 
complete regular tasks like scanning for vulnerabilities, and 
threat analysis allowing for human interaction to confirm and 
make the final decision. In our experiments using simulations we 
found that when we used our model with AI assistance that we 
could detect exploits in a much shorter time and our zero-day 
vulnerabilities performed better than manually testing. In the 
report/paper we offer many examples and a system technical 
architecture on how the AI and human components of the system 
introduced work together. Our results indicate that AI ethical 
hacking can reduce pentesting time and improve security. There 
are challenges with implementation and model bias, along with 
ongoing risks such as adversarial attacks. In summary, we 
present solutions and future research opportunities for the secure 
implementation of AI in penetration testing for the purpose of 
cybersecurity. 
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I. INTRODUCTION 

 
Simultaneously, Artificial Intelligence (AI) and Machine 

Learning (ML) techniques have shown great promise for 
addressing a variety of problems in cybersecurity. Deep 
learning models, Natural Language Processing (NLP) models, 
and anomaly detection systems have claimed perfect (or near 
perfect) performance identifying complex attack vectors, on 
benchmark datasets. Research has shown that AI can be used 
to automate vulnerability detection, recommend exploits, and 
improve incident prioritization, thus improving overall 
operational efficiency. 

 
Notwithstanding, many challenges remain with fully 

autonomous AI systems including bias, lack of explainability, 
and the potential for adversarial exploitation, trust in decisions, 
and ethical considerations. To fill the voids, we propose a 
Collaborate Deep Learning (CDL) Framework, where the AI 
is automating tasks while the human ethical hacker is 

verifying findings, providing feedback, and offline purposeful 
strategic moves.  

  
This paper proposes an overview of the CDL architecture, 

highlights selected domains showcasing employment of the 
architecture and experimental validation of the CDL 
Frameworks effectiveness in these areas, and examines the 
challenges, successes and methods of AI-empowered ethical 
hacking concepts. 

II. LITERATURE REVIEW 

The integration of Artificial Intelligence into cybersecurity 
has been extensively studied, with numerous contributions 
highlighting its impact on intrusion detection, anomaly 
detection, threat intelligence, and penetration testing. 

 
In intrusion detection systems (IDS), deep learning models 

such as convolutional neural networks (CNNs), recurrent 
neural networks (RNNs) or hybrid models have yielded very 
high success for learning complex attack patterns in literature. 
Multiple studies reported accuracies higher than 99% using 
the nsl-kdd and cic-ids2017 benchmark datasets [1] [2]. On 
top of single model studies, feature selection methods and 
ensemble learning, or the use of oversampling, have also 
improved performance in machine learning-based IDS models. 

 
Recently, recent literature has explored AI-based 

penetration testing. Koroniotis et al. [3] created a LSTM-
enabled pentesting framework for IoT environments and 
reported very good detection performance. He et al. [4] 
developed AI-based ethical hacking approaches for health 
information systems and used ant colony optimization (ACO) 
algorithms - which demonstrated to effectively find 
vulnerabilities. 

 
The increasing prevalence of the use of generative AI for 

pentesting wether that is using large language models (LLMs) 
to help write exploits or write reports has also been noted in 
the literature by Hilario et al. [5]. These AI systems have all 
measured as being significantly faster operations, nonetheless 
issues surrounding ethics and the use of these systems in 
pentesting include but are not limited to adversarial attack 
possibilities, hallucinating vulnerabilities, privacy issues, and 
accountability. 
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Therefore while AI systems can enhance cybersecurity 

processes, literature indicates this means there is a need for 
human intervention, a lack of transparency in these actions, 
and responsible integration practice to allow for ethical safety. 

III. METHODOLOGY 

Our proposed Collaborative Deep Learning (CDL) 
Framework blends AI automation with human ethical hacking 
expertise. 

The methodology consists of the following phases: 
 

A. Reconnaissance and Data Collection 
Information gathering occurs through services and scanning 

tools (Nmap, Shodan) and network-monitoring. The 
information will consist of intelligence on open ports, services, 
OS versions, and configurations which feed the knowledge 
base. 

 
B. AI-Driven Vulnerability Scanning 

NMAP, Shodan, and other tools will be broadly used to 
complete machine learning based models on all the data with 
known vulnerabilities and exploit patterns, and examples are 
generally used like CNN, LSTM, and Random Forests which 
look for anomalies or differences in traffic, firmware, and 
configuration. 

 
C. Automated Exploit Suggestion 

After identifying vulnerabilities, AI modules will suggest 
possible exploitable vulnerabilities, and a generative AI model, 
either based on a fine-tuned language model but automatically 
produce sample attack payloads based on the characteristics of 
vulnerabilities as criteria. 

 
D. Human-in-the-Loop Verification 

While AI can detect possible vulnerabilities after analyzing 
the environment during vulnerability analysis, collecting the 
data, and continuing to report, the security analyst validates 
vulnerabilities, disputes, and hearsay, gives some direction to 
AI, filter false positives, and select some action. 

 
E. Attack Simulation and Reporting 

When confirming vulnerabilities in sandbox or controlled 
environments, the validated vulnerabilities will be exploited 
for further reconnaissance to build an attack vector, the 
security analyst uses a means to confirm exploited aspects of 
the business or economy will compiled following attack 
vectors, exploited systems and assessments of impact are 
outlined in detail in the penetration test report. 

 
F. Continuous Learning and Feedback 

Human analyst's feedback and attack simulation results are 
utilized to retrain the AI models. The loop of continuous 
learning enhances the accuracy of the models, resonates with 
rising threats, and decreases bias over time.  

Figure 1: CDL framework architecture overview 
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IV. SYSTEM ARCHITECTURE 

The Collaborative Deep Learning (CDL) System 
Architecture has been designed with modular and scalable 
components to ensure security, efficiency and flexibility. The 
primary components are: 

 
A. Data Sources 

Network sensors, system log files, vulnerability scanners 
and public databases (e.g., CVE repositories) serve as initial 
data sources. 

 
B. AI Analysis Engine This core module hosts: 

 
Feature Extraction units, responsible for converting raw 

data into formats that can be input into models.  
  
Anomaly Detection Models (CNNs, Autoencoders) used to 

detect abnormal patterns.  
  
Vulnerability Scoring Models used to prioritize 

vulnerabilities based on severity. 
 

C. Attack Orchestration Unit 
This unit will organize the suggested exploits produced by 

the AI and will facilitate the execution of controlled attacks in 
a sandboxed environment to establish whether the 
vulnerabilities are exploitable. 

 
D. Human–AI Interface 

A dashboard provides live visualizations of the findings 
produced by the AI. Analysts can approve, deny or alter the 
suggestions made by the AI in the interest of human oversight 
in any critical decisions. 

 
E. Knowledge Base and Model Updater 

The confirmed vulnerabilities, exploits and human feedback 
are stored in one common database. Periodically, the AI 
models will be retrained using the enriched database to 
optimize future performance. 

 

 
 

Figure 2: CDL System Architecture Overview 
 

V. EXPERIMENT & RESULT 

The researchers aimed to validate the above proposed 
Collaborative Deep Learning (CDL) Framework, by 
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performing a practical evaluation using two Windows-based 
machines and Anaconda JupyterLab.  The focus of the 
evaluation was to evaluate the performance of the CDL 
framework against two approaches to compare;  

i) Manual pen testing and  
ii) Normal automated scanners. 
 

A. Experimental Setup 
 
A lightweight virtual testbed was created over two physical 

Windows systems.  One operating system served as the 
analysis and training environment for machine learning 
models and the second system was used to generate attack 
traffic using benchmark datasets.  All experiments were within 
JupyterLab and implemented using Python based libraries, 
such as TensorFlow, Scikit-learn, Pandas, and Matplotlib. 

 
The following publicly available datasets were used: 
 

 NSL-KDD: A cleaned version of the KDD'99 dataset 
developed for network intrusion detection benchmark 
purposes. 

 CICIDS 2017 A large dataset with different attack types 
covering modern attack techniques related to DDoS, 
brute-force, and botnet traffic. 

 
Three different AI models were part of the CDL pipeline: 
 

 CNN-based anomaly detector that identifies any 
abnormal network behavior (e.g., port scans, DDoS). 

 Random Forest classifier which predicted the risk to 
vulnerabilities using system-level (in the context of pen 
testing). 

 Feedforward Neural Network (FNN), which related 
vulnerability to the exploit type. 

 
As baselines, the following approaches were used: 
 

 Manual ethical hacking, using tools like Nmap and 
OpenVAS. 

 Standard automated scanners, like Nessus and Nikto, 
without AI enhancements. 

  
B. Evaluation Metrics 

 
The system was evaluated using the following metrics: 
 

 Detection Rate (True Positive Rate) –Correctly 
identifying actual attacks. 

 False Positive Rate (FPR) – Incorrectly flagged benign 
events Flagged benign events incorrectly. 

 Exploit Mapping Accuracy – Correctly suggested 
exploits by the FNN. 

 Average Detection Time – Time taken from the initiation 
of the scan to sending detection notifications. 

 
C. Observations 

The results for CDT were better than all other frameworks 
for all evaluation metrics (Table 1). 

 
 

 
Approach 

 

 
Detection 
Rate (%) 

 

 
FPR 
(%) 

 

 
Time 
(min) 

 
Exploit 
Coverage 
(Critical 
Vulns) 

Manual 
Pentest 

91.3 4.6 17 Baseline 

Automated 
Scanner 

 
94.5 

 
5.3 

 
14.5 

Slight 
Improvement 

CDL 
Framework 

 
99.7 

 
2.1 

 
11.8 

 
27% higher 

 
Table I – Performance Metrics Comparison 

 

The CNN model successfully identified stealthy attacks in the 
CICIDS dataset, and the Random Forest model was highly 
predictive at classifying types of intrusion in the NSL- KDD. 
The FNN achieved 93% in exploit mapping accuracy when 
validated against hand-labeled exploit categories. 

 

D. Practical Execution 

 

All of the models were trained and tested in the Jupyter 
environment. The CNN model was trained for ten epochs with 
a batch size of 64 as follows: 

 

model = Sequential()  

model.add(Dense(128, activation='relu', 
input_shape=(X.shape[1],)))  

.add(Dense(64, activation='relu'))  

model.add(Dense(1, activation='sigmoid')) 

model.compile(optimizer='adam', loss='binary_crossentropy', 
metrics=['accuracy']) 

model.fit(X, y, epochs=10, batch_size=64, 
validation_split=0.2) 

 

Training accuracy exceeded 99.6%, showing that the model is 
a suitable candidate for an intrusion detection model. 

 

E. Performance Visualization 

 

The figure below shows a performance comparison chart of 
the detection rate and average detection time of the three 
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methods. As shown here, the CDL framework has the highest 
accuracy and lowest processing time consistent with the 
findings for quantitative effectiveness. 

 

 
Figure 3. Performance comparison of manual pentesting, 

automated scanning, and the proposed CDL framework based on 
detection rate and average detection time. 

 

F. Human-AI Collaboration Observations 

 

The ethical hackers that participated in the experiment 
mentioned that their verification time was approximately 30-
35% less by utilizing AI-generated insights. The feedback loop 
allowed the AI models to adjust more accurately for upcoming 
experimentation, further proving the value of continuous human-
in-the-loop improvement. 

 

VI. CHALLENGES & SOLUTIONS 

While the use of artificial intelligence effectively enhances 
ethical hacking operations, it also brings with it a set of 
operational, technical, and ethical issues. The given CDL 
(Collaborative Deep Learning) framework identifies these 
main issues and includes specific mitigation techniques to 
combat them effectively. 

 
A. Model Bias and False Positives 

 
Challenge: 
AI-based detection could create false positives; meaning it 

must flag benign activities as malicious behaviors, and may 
not recognize previous attack patterns it has never seen before. 
This can ultimately increase the burden on analysts, and can 
also result in desensitization of alerts. 

 
Solution: 
To reduce the risk of generating false positives, the system 

includes diverse populated and continuously updated data sets, 
such as known behaviors and emerging threat behaviors. The 
system also includes ensemble models in order to leverage 
multiple learning algorithms to enhance detection. An 
interactive loop between the human analysts and the AI 

learning will enable real-time model tuning, which provides 
the AI system with the capability to learn from previous 
incorrect classifications and to decrease bias over time. 
 

 
B. Adversarial Attacks on AI Models 

 
Challenge: 
A sophisticated attacker will be able to create adversarial 

inputs; which are slight modifications of the original data that 
are designed to fool machine learning classifiers, thereby 
avoiding detection. 

 
Solution: 
Adversarial training can be integrated into your learning 

process. When the AI is presented with adversarially modified 
data samples during training, it can become more resilient to 
potential forms of manipulation. In the second layer of 
detection, anomaly detection models can be used to detect an 
unusual behavior even if the primary classifier disagrees, such 
as commonly used convolutional neural network (CNN). 

 
 

C. Privacy and Legal Compliance 
  
Challenge: 
Inspecting security logs and user activity information 

involves risks to privacy and can compromise compliance, e.g., 
GDPR, HIPAA. 

 
Solution: 
The framework uses federated learning to decentralize the 

training, so sensitive data is kept on the local device. Only 
model updates are communicated for aggregation, as opposed 
to raw data. Further, to protect user identity, differential 
privacy approaches were used to add statistical noise to the 
datasets, so that individual records do not "belong" to any one 
user. 
 

 
D. Explain ability and Trust 

 
Challenge: 
Security analysts may not be inclined to trust AI decisions 

if they do not understand the underlying decision logic, thus 
impeding any trust and adoption of the model. 

 
Solution: 
The framework includes Explainable AI (XAI) tools (e.g., 

SHAP [Shapley Additive Explanations] and LIME [Local 
Interpretable Model-agnostic Explanations]), which show 
which features led to a model's recommendation and the 
impact of those features. Additionally, there is a confidence 
score for any AI recommendations to inform analyst judgment 
and to improve trust in the recommend decision. 

 
 

E. Ethical Misuse Risk 
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Challenge: 
AI-empowered penetration tools could be weaponized if not 

accessed by the right individuals, creating severe risks to 
system integrity and public safety. 

 
Solution: 
Features of the framework that prevent misuse include role-

based access, real-time vigilance tracking, and automatic 
activity logging and storage for all modules. Sensitive 
capabilities such as exploit generation will be limited to 
authorized environments with all usage being sandboxed. All 
activities will operate hurry up to ensure compliance with 
ethical stab protocols with the parameters of existing laws to 
ensure accountability and responsibility. 

VII. FUTURE SCOPE 

The future of adversarial AI and AI-empowered ethical 
hacking is vast and bright. As adversarial threats develop and 
artificial intelligence capabilities grow, new pathways for 
security automation, responsiveness, and intelligence-sharing 
will surface. Below are trends that we expect to be major 
influencers in the next generation of AI-powered cyber 
security platforms. 

 
 

A. Integration with Generative AI  
 
Advanced language models such as GPT-4 and future 

transformers, can unlock a new frontier in penetration testing. 
Specifically, these models can be trained on curated exploit 
repositories and threat intelligence feeds to automatically 
develop context-aware payloads, social engineering scripts 
and attacks plans that are generated on-demand or context-
specific. This would significantly decrease the effort to 
manual script, while improving the creativity and scope of 
automated red team efforts. Protocols will need to be created 
to ensure ethical deployments to avoid misuse or across-the-
board over-automation (an AI operating autonomously 
without human operators). 

 
 

B. Large-scale Federated Learning 
 
Federated learning has proven its worth as a method of 

training privacy-preserving AI models. The scope of federated 
learning in the near future will no longer be confined to a 
single verticals and can be scaled across industries and 
governments, providing greater collective intelligence and the 
protection of local data sovereignty. This means multiple 
organizations can work together to improve their intrusion 
detection models, while retaining threat logs that contain local 
PII data files. Potentially transparency and traceability of 
models could be built upon blockchain-based audit trails to 
allow stakeholders to review training protocols to ensure 
avoidance of "bad data."  

 
C. DevSecOps Automation 

 
In processing AI-enabled security validation processes into 

CI/CD pipelines is a logical next step in DevSecOps evolution. 
Integrating lightweight pentesting capabilities into software 
development lifecycle processes, organizations will be able to 
automatically tag insecure code commits, flag secure coding 
alternatives, and alert real time before deployment. Solving 
vulnerabilities in this continuous feedback loop can help 
reduce the risks of breaches and, also, lower the overall costs 
of patching. 

 
D. Quantum-Resilient Security Testing 

 
The emergence of quantum computing creates another class 

of cyber security threats, particularly directed against various 
cryptographic protocols. Future ethical hacking frameworks 
built on AI will need to feature modules that will test for 
quantum vulnerability, simulate post-quantum attack modes, 
and verify quantum-safe cryptographic implementations. 
Cooperation and collaboration with the quantum research 
communities is essential in developing pre-emptive defence 
models. 

 
E. Autonomous Blue and Red Teams 

 
The concept of AI-driven red and blue teams presents a 

significant step toward fully autonomous security simulations. 
Red team agents could autonomously probe, exploit, and adapt 
attacks using reinforcement learning, while blue team agents 
could detect, respond, and harden systems in real time. The 
closed-loop training between offensive and defensive agents 
may generate synthetic data and intelligence that continuously 
improves both sides, enhancing system resilience without 
human intervention. 

 
F. Standardization and Regulation 

 
As AI continues to permeate cybersecurity, the need for 

globally recognized standards, regulations, and ethical 
guidelines becomes paramount. Standardization bodies such as 
IEEE, ISO, and NIST are expected to release comprehensive 
frameworks outlining the safe, lawful, and transparent use of 
AI in penetration testing, vulnerability discovery, and threat 
response. These standards will guide industry practices, ensure 
interoperability, and help enforce responsible AI deployment 
in high-stakes environments. 

VIII. CONCLUSION 

This study has presented a new AI Powered Ethical 
Hacking Framework that combines the power of the artificial 
intelligence and human skills to improve cybersecurity 
practices. The framework includes the incorporation of deep-
learning models, automated exploitation generation, and 
traditional penetration testing methodologies while allowing 
human-in-the-loop oversight through a coupled interface. 

 
The findings demonstrated the proposed system improved 

vulnerability detection, testing efficiency and adaptability 
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when compared with either manual or traditional automated 
testing methodologies via controlled experimentation. The 
proposed socio-technical architecture can learn over time from 
the feed-back of completed penetration tests making it 
resilient to threats in dynamic cyber environments and 
scalable to future iterations. 

 
We presented best practices regarding inherent 

methodological challenges including AI bias and ethical 
concerns. There were also best practice implementations 
proposed in our study regarding privacy, explainability, and 
human in the loop control (connectivity), like federated 
learning and explainable AI. The paper outlines future work to 
improve the nutritional content of the framework by 
considering ethical standards at the global level, how our 
framework can integrate with larger cyber defence practices 
(like DevSecOps), and further the possibilities supported by 
quantum-safe AI models in imperfect cyber environments. 

 
To conclude, while AI-Powered Ethical Hacking is only 

recently emerging, it provides improved scalability, 
intelligence, and adaptability for tactical and strategic 
cybersecurity practices; through continued adaption 
(intelligently) to the nature of the potential targets it provides 
intelligent defensive mechanisms to combat threats and to 
supplement existing traditional practices. If acted with due 
diligence, organizations incorporating such an AI-Empowered 
Ethical Hacking framework into their operational activities 
will be able to stay ahead of threats. 
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